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Bistability of pulsating intensities for double-locked laser diodes
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Rate equations for semiconductor lasers subjected to simultaneous near-resonant optical injection and mi-
crowave current modulation are examined by combined analytical-numerical bifurcation techniques. Simple
qualitative criteria are given for a bistable response. These results compare well with experimental measure-
ments.
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[. INTRODUCTION assumed zero, and we analyzed the laser response as a func-
tion of the optical injection rate. We found several branches

Bistability of pulsating regimes for weakly periodically of periodic and quasiperiodic intensity oscillations but no
forced oscillators is a well known phenomenon for mechanicase of bistability. Our present analysis of the laser equations
cal or electronic systems such as the driven Duffing or variakes the optical detuning instead of the injection rate as the
der Pol oscillator§1,2]. It is, however, poorly documented Ccontrol parameter and leads to cases of bistability.
for lasers exhibiting limit-cycle intensity oscillations such as  1he paper is organized as follows. In Sec. Il, we formu-
semiconductor lasers subject to optical injection. Cases dfite the laser rate equations and derive a slow time amplitude
bistability have been reported for periodically modulateg€duation. The solutions of this equation are then analyzed
semiconductor lasers but under strong modulation condition@nalytically and numerically and the possible bifurcation dia-
and between different periodic states such as period-1 arf@ms are shown in Sec. Ill. We emphasize the domains of
period-2 regime§3—6]. Bistability under weak modulation blsta_blllty in the injection rate versus detuning dlggrams.
conditions is less well known for lasers in gendi@lbut this Section IV |s_dev<_)ted to the experiments and the main results
problem was revived by recent experiments using opticallp'® Summarized in Sec. V.
injected diode lasers at high injection raf&3. In these ex-
periments, cw optical injection induces a limit-cycle instabil- Il. FORMULATION AND AMPLITUDE EQUATION
ity in the optical output. When a small periodic current . S
modulation is added to the dc bias current remarkable ”mit’[iorl:/li?]s;Zfir?gﬂ;.%lggésfj?ongén%s;rtgigggcftri;f r?ﬁﬁ}ﬁ!ég{e;r; d
cycle phase locking performances have been obtained. The . . : .
laser is doubly locked to the cw optical injection and theanalytlcal studies of simple rate equations for the complex

microwave current modulation. The output power exhibits a]%alggglgfﬂdeilr?ér?sr:gntlgessegtzsz Cuaar{i'g:]g?smdk?};]-:]i;g?;; sev-
deep, high quality microwave oscillation. A similar perfor- d

mance has been observed previously by using sideband iIg?_ral places. Introducing the current modulation, these equa-

jection locking where a semiconductor laser is stably Iockec}Ions are given by15]

to a modulation sideband of a master la§@r13]. Such de

devices are promising for a number of applications that re- —=(1+ia)ZE+IQE+A, )

quire a spectrally pure microwave oscillator with frequencies dt

in the tens of gigahertz. A bistable output means that two

distinct amplitudes of the oscillations are available for cer- Td_Z: P[1+ Scodwt)]—Z—(1+22)| ]2 )

tain values of the control parameters. As we shall demon- dt '

strate analytically and show with experimental measure-

ments, bistability can be achieved under strong opticaHere timet is measured in units of the photon lifetima.

injection with simultaneous weak current modulation, al-denotes the amplitude of the injected signéland « de-

though the domain of parameters is not obvious. scribe the modulation depth and the frequency of the current
In this paper, we model such a double-locking experimenmodulation, respectivelyP is the average value of the di-

using the laser rate equations, which are then analyzed byensionless pumping current above threshold. The fixed pa-

combined analytical and numerical bifurcation techniquesrametersa and T are the linewidth enhancement factor,

Our objective is to determine simple conditions for bistabil-which measures the degree of amplitude-phase coupling, and

ity which will guide our experiments. In our previous analy- the ratio of carrier lifetime to photon lifetime, respectively.

sis of the laser equatiorfd4,15, the optical detuning was is typically anO(10®%) large quantity which allows important
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simplifications in our analysis. Finally) is defined as the @ b
detuning between slave and master optical frequencies.
In the absence of modulation, the steady output solutions“A"2
and their stability boundaries are available analyticpll§].
For a range of detuning values, there exists a threshold valu
Ay of the optical injection rate above which the intensity o 0
limit-cycle oscillations vanish in favor of a steady output.
Such a threshold is known as a Hopf bifurcation. Moreover,
conditions of resonance between the modulation frequency HLP - .
and the limit-cycle frequencyny, at the Hopf bifurcation 4l Tl Mo Il
(wy= ) can be determined analyticaligee Appendix A in ‘T*\
[15]). For fixed values of the laser parametess(), T, and
P, these conditions lead to critical values forand w which 0 Q Q
we denote byA = A* andw= w*. Our analysis assumes that ¢ f
() the laser operates close to the Hopf bifurcation poift (
=A*), (i) the detunindQ}| and the modulation amplitud& Ll HLP ™. LP il
are small, andiii) the modulation frequency is nearly reso- - \_‘_“;. '-P"\ ? - LP
nant (w=w*), which is a necessary condition for phase  |----- LR -
locking. A two-time perturbation analys[47] allows us to 0 0
construct a periodic solution in the vicinity of this point. The Q Q
leading approximation of the intensity is given by FIG. 1. One-parameter bifurcation diagrams.The figure repre-
sents the root-mean-square aver of the amplitude of the
|5|2: |50|2+ Rcodwt+¢)+ O(Rz) 3 oscillations(measured i?l arbitrary fr?f;s a functionpof the optical
detuning() (measured in arbitrary units and with an arbitrary off-
sef). Framega) to (f) correspond to increasingly high values of the
modulation strengtld. All other parameters are fixed. In particular,
a=5. The thin solid and dashed lines represent the stable and un-
“stable steady solutions of E@), respectively. According to Eq.

ll41l,

4

where|£,|? is the steady state intensity at the Hopf bifurca-
tion point. The small amplitude oscillations are sinusoidal in
first approximation with amplitud® and phasep. They both

change slowly with respect to time and the complex ampli

tudeA=Rexp(¢) satisfies an equation of the form (3), these solutions correspond to phase-locked, periodic intensity
d pulsations of the original laser equatiofi3 and (2). Unstable so-
. _ lutions are unobservable experimentally. The thicker lines represent
ik,——=ks0+A[k, (w—o*)+ky(A—A*
odt [ko(@= ™) +ka( ) periodic solutions of Eqi4). They are all stable and, using EG),

2 these solutions correspond to branches of oscillating solutions of
+KoQ — k3| A[]. (4) the original laser equatiori¢) and(2) with a slowly varying phase.

— L The critical bifurcation points are marked in the figures. LP means
The derivation of such an equation is well documented forIimit point or saddle-node bifurcation point; T means a torus bifur-

simple oscillator problemgL,2]. For problems like our laser  cation point from phase-lockegeriodid to variable phaséquasi-
equations(1) and (2), the perturbation analysis is algebra- periodig oscillations; H and HLP refer to a homoclinjor infinite

ically longer but the asymptotic method is technically theperiog periodic solution and a homoclinic limit point, respectively.
same. This is an extension of our previous anallysig: for

Q0 =0, Eq.(4) is equivalent to Eq(16) in [15]. The complex ues of the modulation strength During each measurement,
coefficients appearing in Eq(4) are of the formk, a control parametefchosen here as the optical detunig
=c,/w*, ks=cg, ky=c,/A*, andko=cq/w* where the is quasistatically swept across the phase-locking range. The
c; have been simplified by taking the limi large and other parameters have been fixedXe=A%, w—w* =w;
checked using the symbolic computation softwarerLe. >0, anda=5. Compared to our previous study of the per-

They depend only on the linewidth enhancement faator ~ fectly tuned laser[15], we now note the possibility of
bistable responses. Bistability means that two stable solu-

IIl. BIFEURCATION DIAGRAMS tions may coexist for a range of values of the sweeping pa-
rameter () [see Figs. (c), 1(d), and 1e)]. Note that a
Steady state solutions of E@l) mean phase-locked limit bistable output does not exist for arbitrarily small values of
cycles of the laser equations, whereas periodic solutionthe modulation strength. Moreover, two kinds of bistability
mean intensity pulsations with a slowly varying phase. Thesenay be distinguished. First, from Figs(dl and Xe), we
solutions are obtained numerically by using the continuatiorobserve the coexistence of two distinct branches of phase-
softwareauTo [18]. The application of continuation methods locked solutions. Second, Fig(cl also shows a small region
for amplitude equations liké&) is rare but allows a determi- of bistability between a locked state and a quasiperiodic
nation of both stable and unstable branches of periodic solwstate.
tions, and, therefore, a better understanding of the laser bi- An alternative description of the dynamics is shown in
furcation possibilities. Figures (8—1(e) represent six Fig. 2. In this figure, we represent the regions of qualitatively
different bifurcation diagrams. Each figure illustrates a typi-different regimes in thes versus{) parameter space. Both
cal double-locking experiment for progressively larger val-kinds of bistability domain correspond to the two roughly
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FIG. 2. Two-parameter map of the dynamics fe=5. The  Curves and right axjsunder weak current modulation.
different dynamical regimes predicted by E4) are shown in thes

(arbitrary unit3 versus(} (arbitrary units and offstiagram. Note  jnjection into the slave. Temperature and current control is
the existence of two distinct bistability regimes. used to bring the optical frequencies of the two lasers into
near resonance. The attenuator adjusts the amplitude of the
triangular shapes in the upper right corner of the figure. Weyptical injection. The slave laser is operated at a bias of
contrast this diagram with the dynamics map in ¢heersus  approximately five times the threshold value, and a micro-
A parameter space discussed15], and reproduced here as wave modulation current from a frequency synthesizer is
Fig. 3. We noted no domain of bistability for realistic values added to the bias. After being split off at the beam splitter,
of 6, which suggests that only experiments with the detuninghe output from the slave laser is passed through additional
as the sweeping parameter may lead to the observation @ptical isolators and detected by a fast photodiode. The pho-
bistability. This point is further discussed in Sec. V. A suc-todiode signal is amplified and split with one arm going to a
cessful observation of bistability requires that its domain inmicrowave spectrum ana|yzer and the other to a microwave
parameter space is large enough. We have found that it tendigixer. At the mixer the signal is compared with the signal
to expand for larger values of linewidth enhancement factofrom the microwave frequency synthesizer and a digitizing
a. oscilloscope detects the resulting intermediate frequency sig-
nal. The output voltage from the mixer tracks the phase off-
IV. EXPERIMENTS set_when t_he two input signals are frequency locked while it
varies rapidly when they are not. Tuned to the frequency of

The theory predicts that a bistable output is possible if wethe synthesizer, the microwave spectrum analyzer is used to
sweep back and forth the optical detuning instead of the inmeasure the power at the reference frequency.
jection rate and if the modulation amplitude surpasses a The master and slave lasers are biased so that optical in-
threshold. The experimental configuration used to study thgction causes the slave laser to operate near the Hopf bifur-
bistability characteristics has been described previol&ly cation. The injected optical power is on the order of 0.01 of
Both master and slave lasers, high speed variants of SDihe free-running output from the slave laser, and the master
model 5400 series lasers, are under separate temperature aaser is slightly detuned to an offset of a few gigahertz below
current control. The master laser output is passed through the free-running optical frequency of the slave. In the results
variable attenuator, optical isolator, and beam splitter beforgresented here, the dc bias to the master laser is slowly var-
ied. While this produces a small change in the amplitude of
the injection signal, the primary effect is to vary the optical
frequency of the master laser at a rate of approximately
—2.8 GHz/mA. Varying the optical frequency of the master
laser causes the dc-biased slave laser to move from stable,
locked operation to limit-cycle dynamics and the frequency
of the resonance to vary. An added modulation current to the
slave laser that is fixed in frequency and amplitude allows us
to view the changes in dynamics as the bias to the master
nonlocking laser is varied.

Figures 4 and 5 show measurements at two different pow-
ers of the modulation signal that illustrate the changes in the
dynamics near the Hopf point. The modulation frequency

FIG. 3. Two-parameter map of the dynamics fe=5. The was fixed at 7.63 GHz. For weak modulation currents, Flg 4,
different dynamical regimes predicted by Ed) are shown inthes  two locking domains are observed. First, a region of periodic
(arbitrary unitg versusA (arbitrary units and offsgidiagram. Note  oscillations corresponding to the small amplitude modulation
that there is no observable domain of bistability. of the stable steady state above the Hopf point appears for

A
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0.02 cycle oscillator driven by a small amplitude and near-
S 001 f resonant modulation. The effect of the nonlinearity is to bend
%’ o [ the amplitude curve, allowing multivalued regions. If a low
5 o and a high amplitude solution may coexist and are stable, we
§ -001 ¢ 2 have a case of bistability that we may observe by sweeping
[ 2] .
$ 002 g back and forth the control parameter. Transitions between
3 003 | (7] low and high amplitude regimes then occur through jumps
g that can be identified experimentally. By using Hopf bifurca-
@ -0.04 128 tion techniques and determining bifurcation diagrams, we
-0.05 : : -30 have found conditions of bistability in terms of the optical
168 169 170 171 detuning. However, the domain of bistability is relatively
Current (mA) small and requires that the modulation amplitude is suffi-

ciently large and that the linewidth enhancement factor is not
too low so that the effects of nonlinearity are maximized.
These conditions guided our experiments shown in Fig. 5,
clearly showing the jumps between high and low states.

To understand why bistability is not possible if we con-

. sider the optical injection as the control paraméfes], we
master laser currents above approximately 170.3 MA. SeGiee( to realize that we modulate a limit-cycle oscillator gen-

ond, a region of resonantly locked oscillations corresponding,aieq by a Hopf bifurcation rather than a conservative os-

to the small amplitude modulation of the limit-cycle oscilla- jjjator like the Duffing mechanical oscillator. As seen in Fig.
tions below the Hopf point was centered about 169 mA. Bothy ' |ocking occurs at a specific limit-cycle amplitude at zero

these regions §how relatively weak fluctuations in the powep,oqulations and, as we progressively increase the driving
at the modulation frequency and the latter also shows a relagmpjitude, this point grows into an isolated branch of locked
tively strong locked power. Outside these two regions, quage|ytions. This isola naturally coexists with a small ampli-

siperiodic oscillations are observed as indicated by the strong, 4 periodic solution. Provided the size of the isola is suf-

fluctuations of the mixer signal and the optical power. Theiciently large, coexistence of two stable regimes is possible
experiment clearly illustrates the bifurcation diagram of Fig. 55 we may see in Figs(d-1(e). This phenomenon occurs if

1(a). When the modulation power is increased by 7 dB theye yse the detuning as the control parameter but not if we
stronger modulation currents cause the two regions to mergeonsider the injection ratésee Figs. 1-5 ifi15]). There, the
as shown in Fig. 5. The smoothly varying mixer voltage, andgo|a never reaches a size that allows its overlap with a small

a relatively strong locked power, indicate the region ofympjitude stable regime, for realistic values of the laser pa-
locked periodic dynamics between approximately 169 angdmeters.

170 mA. Note the region of bistability at the edge of this
locked region as the laser makes the transition to limit-cycle ACKNOWLEDGMENTS
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