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Bistability of pulsating intensities for double-locked laser diodes
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Rate equations for semiconductor lasers subjected to simultaneous near-resonant optical injection and mi-
crowave current modulation are examined by combined analytical-numerical bifurcation techniques. Simple
qualitative criteria are given for a bistable response. These results compare well with experimental measure-
ments.
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I. INTRODUCTION

Bistability of pulsating regimes for weakly periodicall
forced oscillators is a well known phenomenon for mecha
cal or electronic systems such as the driven Duffing or
der Pol oscillators@1,2#. It is, however, poorly documente
for lasers exhibiting limit-cycle intensity oscillations such
semiconductor lasers subject to optical injection. Cases
bistability have been reported for periodically modulat
semiconductor lasers but under strong modulation condit
and between different periodic states such as period-1
period-2 regimes@3–6#. Bistability under weak modulation
conditions is less well known for lasers in general@7# but this
problem was revived by recent experiments using optic
injected diode lasers at high injection rates@8#. In these ex-
periments, cw optical injection induces a limit-cycle instab
ity in the optical output. When a small periodic curre
modulation is added to the dc bias current remarkable lim
cycle phase locking performances have been obtained.
laser is doubly locked to the cw optical injection and t
microwave current modulation. The output power exhibit
deep, high quality microwave oscillation. A similar perfo
mance has been observed previously by using sideban
jection locking where a semiconductor laser is stably lock
to a modulation sideband of a master laser@9–13#. Such
devices are promising for a number of applications that
quire a spectrally pure microwave oscillator with frequenc
in the tens of gigahertz. A bistable output means that t
distinct amplitudes of the oscillations are available for c
tain values of the control parameters. As we shall dem
strate analytically and show with experimental measu
ments, bistability can be achieved under strong opt
injection with simultaneous weak current modulation,
though the domain of parameters is not obvious.

In this paper, we model such a double-locking experim
using the laser rate equations, which are then analyzed
combined analytical and numerical bifurcation techniqu
Our objective is to determine simple conditions for bistab
ity which will guide our experiments. In our previous anal
sis of the laser equations@14,15#, the optical detuning was
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assumed zero, and we analyzed the laser response as a
tion of the optical injection rate. We found several branch
of periodic and quasiperiodic intensity oscillations but
case of bistability. Our present analysis of the laser equat
takes the optical detuning instead of the injection rate as
control parameter and leads to cases of bistability.

The paper is organized as follows. In Sec. II, we form
late the laser rate equations and derive a slow time amplit
equation. The solutions of this equation are then analy
analytically and numerically and the possible bifurcation d
grams are shown in Sec. III. We emphasize the domain
bistability in the injection rate versus detuning diagram
Section IV is devoted to the experiments and the main res
are summarized in Sec. V.

II. FORMULATION AND AMPLITUDE EQUATION

Most of our understanding of the effects of optical inje
tion in a single-mode diode laser comes from numerical a
analytical studies of simple rate equations for the comp
electric fieldE and the excess carrier numberZ. The formu-
lation of dimensionless rate equations is documented in s
eral places. Introducing the current modulation, these eq
tions are given by@15#

dE
dt

5~11 ia!ZE1 iVE1L, ~1!

T
dZ

dt
5P@11d cos~vt !#2Z2~112Z!uEu2. ~2!

Here timet is measured in units of the photon lifetime.L
denotes the amplitude of the injected signal.d and v de-
scribe the modulation depth and the frequency of the cur
modulation, respectively.P is the average value of the d
mensionless pumping current above threshold. The fixed
rametersa and T are the linewidth enhancement facto
which measures the degree of amplitude-phase coupling,
the ratio of carrier lifetime to photon lifetime, respectively.T
is typically anO(103) large quantity which allows importan
©2002 The American Physical Society10-1
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simplifications in our analysis. Finally,V is defined as the
detuning between slave and master optical frequencies.

In the absence of modulation, the steady output soluti
and their stability boundaries are available analytically@16#.
For a range of detuning values, there exists a threshold v
LH of the optical injection rate above which the intens
limit-cycle oscillations vanish in favor of a steady outpu
Such a threshold is known as a Hopf bifurcation. Moreov
conditions of resonance between the modulation frequencv
and the limit-cycle frequencyvH at the Hopf bifurcation
(vH5v) can be determined analytically~see Appendix A in
@15#!. For fixed values of the laser parametersa, V, T, and
P, these conditions lead to critical values forL andv which
we denote byL5L* andv5v* . Our analysis assumes th
~i! the laser operates close to the Hopf bifurcation pointL
.L* ), ~ii ! the detuninguVu and the modulation amplituded
are small, and~iii ! the modulation frequency is nearly res
nant (v.v* ), which is a necessary condition for pha
locking. A two-time perturbation analysis@17# allows us to
construct a periodic solution in the vicinity of this point. Th
leading approximation of the intensity is given by

uEu25uE 0u21R cos~vt1f!1O~R2! ~3!

whereuE 0u2 is the steady state intensity at the Hopf bifurc
tion point. The small amplitude oscillations are sinusoida
first approximation with amplitudeR and phasef. They both
change slowly with respect to time and the complex am
tudeA5R exp(if) satisfies an equation of the form

ikv

dA

dt
5kdd1A@kv~v2v* !1kL~L2L* !

1kVV2k3uAu2#. ~4!

The derivation of such an equation is well documented
simple oscillator problems@1,2#. For problems like our lase
equations~1! and ~2!, the perturbation analysis is algebr
ically longer but the asymptotic method is technically t
same. This is an extension of our previous analysis@15#: for
V50, Eq.~4! is equivalent to Eq.~16! in @15#. The complex
coefficients appearing in Eq.~4! are of the form kv

5cv /v* , kd5cd , kL5cL /L* , andkV5cV /v* where the
cj have been simplified by taking the limitT large and
checked using the symbolic computation softwareMAPLE.
They depend only on the linewidth enhancement factora.

III. BIFURCATION DIAGRAMS

Steady state solutions of Eq.~4! mean phase-locked limi
cycles of the laser equations, whereas periodic soluti
mean intensity pulsations with a slowly varying phase. Th
solutions are obtained numerically by using the continuat
softwareAUTO @18#. The application of continuation method
for amplitude equations like~4! is rare but allows a determi
nation of both stable and unstable branches of periodic s
tions, and, therefore, a better understanding of the lase
furcation possibilities. Figures 1~a!–1~e! represent six
different bifurcation diagrams. Each figure illustrates a ty
cal double-locking experiment for progressively larger v
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a control parameter~chosen here as the optical detuningV)
is quasistatically swept across the phase-locking range.
other parameters have been fixed toL5L* , v2v* 5v1
.0, anda55. Compared to our previous study of the pe
fectly tuned laser@15#, we now note the possibility of
bistable responses. Bistability means that two stable s
tions may coexist for a range of values of the sweeping
rameter V @see Figs. 1~c!, 1~d!, and 1~e!#. Note that a
bistable output does not exist for arbitrarily small values
the modulation strengthd. Moreover, two kinds of bistability
may be distinguished. First, from Figs. 1~d! and 1~e!, we
observe the coexistence of two distinct branches of pha
locked solutions. Second, Fig. 1~c! also shows a small region
of bistability between a locked state and a quasiperio
state.

An alternative description of the dynamics is shown
Fig. 2. In this figure, we represent the regions of qualitativ
different regimes in thed versusV parameter space. Bot
kinds of bistability domain correspond to the two rough

FIG. 1. One-parameter bifurcation diagrams.The figure rep
sents the root-mean-square averageiAi2 of the amplitude of the
oscillations~measured in arbitrary units! as a function of the optica
detuningV ~measured in arbitrary units and with an arbitrary o
set!. Frames~a! to ~f! correspond to increasingly high values of th
modulation strengthd. All other parameters are fixed. In particula
a55. The thin solid and dashed lines represent the stable and
stable steady solutions of Eq.~4!, respectively. According to Eq
~3!, these solutions correspond to phase-locked, periodic inten
pulsations of the original laser equations~1! and ~2!. Unstable so-
lutions are unobservable experimentally. The thicker lines repre
periodic solutions of Eq.~4!. They are all stable and, using Eq.~3!,
these solutions correspond to branches of oscillating solution
the original laser equations~1! and~2! with a slowly varying phase.
The critical bifurcation points are marked in the figures. LP mea
limit point or saddle-node bifurcation point; T means a torus bif
cation point from phase-locked~periodic! to variable phase~quasi-
periodic! oscillations; H and HLP refer to a homoclinic~or infinite
period! periodic solution and a homoclinic limit point, respectivel
0-2
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BISTABILITY OF PULSATING INTENSITIES FOR . . . PHYSICAL REVIEW E 65 056610
triangular shapes in the upper right corner of the figure.
contrast this diagram with the dynamics map in thed versus
L parameter space discussed in@15#, and reproduced here a
Fig. 3. We noted no domain of bistability for realistic valu
of d, which suggests that only experiments with the detun
as the sweeping parameter may lead to the observatio
bistability. This point is further discussed in Sec. V. A su
cessful observation of bistability requires that its domain
parameter space is large enough. We have found that it t
to expand for larger values of linewidth enhancement fac
a.

IV. EXPERIMENTS

The theory predicts that a bistable output is possible if
sweep back and forth the optical detuning instead of the
jection rate and if the modulation amplitude surpasse
threshold. The experimental configuration used to study
bistability characteristics has been described previously@8#.
Both master and slave lasers, high speed variants of S
model 5400 series lasers, are under separate temperatur
current control. The master laser output is passed throu
variable attenuator, optical isolator, and beam splitter be

FIG. 2. Two-parameter map of the dynamics fora55. The
different dynamical regimes predicted by Eq.~4! are shown in thed
~arbitrary units! versusV ~arbitrary units and offset! diagram. Note
the existence of two distinct bistability regimes.

FIG. 3. Two-parameter map of the dynamics fora55. The
different dynamical regimes predicted by Eq.~4! are shown in thed
~arbitrary units! versusL ~arbitrary units and offset! diagram. Note
that there is no observable domain of bistability.
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injection into the slave. Temperature and current contro
used to bring the optical frequencies of the two lasers i
near resonance. The attenuator adjusts the amplitude o
optical injection. The slave laser is operated at a bias
approximately five times the threshold value, and a mic
wave modulation current from a frequency synthesizer
added to the bias. After being split off at the beam splitt
the output from the slave laser is passed through additio
optical isolators and detected by a fast photodiode. The p
todiode signal is amplified and split with one arm going to
microwave spectrum analyzer and the other to a microw
mixer. At the mixer the signal is compared with the sign
from the microwave frequency synthesizer and a digitiz
oscilloscope detects the resulting intermediate frequency
nal. The output voltage from the mixer tracks the phase
set when the two input signals are frequency locked whil
varies rapidly when they are not. Tuned to the frequency
the synthesizer, the microwave spectrum analyzer is use
measure the power at the reference frequency.

The master and slave lasers are biased so that optica
jection causes the slave laser to operate near the Hopf b
cation. The injected optical power is on the order of 0.01
the free-running output from the slave laser, and the ma
laser is slightly detuned to an offset of a few gigahertz bel
the free-running optical frequency of the slave. In the resu
presented here, the dc bias to the master laser is slowly
ied. While this produces a small change in the amplitude
the injection signal, the primary effect is to vary the optic
frequency of the master laser at a rate of approxima
22.8 GHz/mA. Varying the optical frequency of the mast
laser causes the dc-biased slave laser to move from st
locked operation to limit-cycle dynamics and the frequen
of the resonance to vary. An added modulation current to
slave laser that is fixed in frequency and amplitude allows
to view the changes in dynamics as the bias to the ma
laser is varied.

Figures 4 and 5 show measurements at two different p
ers of the modulation signal that illustrate the changes in
dynamics near the Hopf point. The modulation frequen
was fixed at 7.63 GHz. For weak modulation currents, Fig
two locking domains are observed. First, a region of perio
oscillations corresponding to the small amplitude modulat
of the stable steady state above the Hopf point appears

FIG. 4. Output voltage from the microwave mixer~top curves
and left axis! and power at the modulation frequency~bottom
curves and right axis! under weak current modulation.
0-3
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master laser currents above approximately 170.3 mA. S
ond, a region of resonantly locked oscillations correspond
to the small amplitude modulation of the limit-cycle oscill
tions below the Hopf point was centered about 169 mA. B
these regions show relatively weak fluctuations in the po
at the modulation frequency and the latter also shows a r
tively strong locked power. Outside these two regions, q
siperiodic oscillations are observed as indicated by the str
fluctuations of the mixer signal and the optical power. T
experiment clearly illustrates the bifurcation diagram of F
1~a!. When the modulation power is increased by 7 dB
stronger modulation currents cause the two regions to me
as shown in Fig. 5. The smoothly varying mixer voltage, a
a relatively strong locked power, indicate the region
locked periodic dynamics between approximately 169 a
170 mA. Note the region of bistability at the edge of th
locked region as the laser makes the transition to limit-cy
dynamics due to modulation of the stably locked laser. T
arrows give the direction of the sweep and the transition. T
experiment illustrates the bifurcation diagrams of Figs. 1~d!
and 1~e!. No bistability is observed for modulation powers
dB below those used for the data in Fig. 5, which agrees w
the condition of a sufficiently high modulation amplitude.

V. DISCUSSION

A laser exhibiting limit-cycle oscillations may either loc
to a weakly modulated signal or sustain quasiperiodic os
lations with two frequencies, namely, the frequency of
modulations and the difference between modulation and s
tary laser frequencies. This is the typical response of a lim

FIG. 5. Output voltage from the microwave mixer~top curves
and left axis! and power at the modulation frequency~bottom
curves and right axis!. The current modulation is 7 dB greater
power than for the data in Fig. 4.
n-

-
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cycle oscillator driven by a small amplitude and nea
resonant modulation. The effect of the nonlinearity is to be
the amplitude curve, allowing multivalued regions. If a lo
and a high amplitude solution may coexist and are stable,
have a case of bistability that we may observe by sweep
back and forth the control parameter. Transitions betw
low and high amplitude regimes then occur through jum
that can be identified experimentally. By using Hopf bifurc
tion techniques and determining bifurcation diagrams,
have found conditions of bistability in terms of the optic
detuning. However, the domain of bistability is relative
small and requires that the modulation amplitude is su
ciently large and that the linewidth enhancement factor is
too low so that the effects of nonlinearity are maximize
These conditions guided our experiments shown in Fig
clearly showing the jumps between high and low states.

To understand why bistability is not possible if we co
sider the optical injection as the control parameter@15#, we
need to realize that we modulate a limit-cycle oscillator ge
erated by a Hopf bifurcation rather than a conservative
cillator like the Duffing mechanical oscillator. As seen in Fi
1, locking occurs at a specific limit-cycle amplitude at ze
modulations and, as we progressively increase the driv
amplitude, this point grows into an isolated branch of lock
solutions. This isola naturally coexists with a small amp
tude periodic solution. Provided the size of the isola is s
ficiently large, coexistence of two stable regimes is poss
as we may see in Figs. 1~c!-1~e!. This phenomenon occurs i
we use the detuning as the control parameter but not if
consider the injection rate~see Figs. 1-5 in@15#!. There, the
isola never reaches a size that allows its overlap with a sm
amplitude stable regime, for realistic values of the laser
rameters.
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